
Journal of Statistical Physics, Vol. 78, Nos. 5/6, 1995 

Diffusion on a Random Comb: Distribution Function 
of the Survival Probability 
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We investigate the distribution function Q(P) describing the survival probability 
on a comb consisting of a backbone with lateral, randomly disconnected infinite 
branches. Two different regimes are analyzed in some detail: (i) at short times, 
Q(P) is shown to have a self-similar structure (devil's staircase); (ii) at large 
times, this function becomes smooth and tends toward a rather well-defined unit 
step function. The disorder-averaged survival probability (p0(t)) is expected to 
decrease as t -3/4 at large times, whereas the relative fluctuations of the sample- 
dependent po(t) display a very slow decay in time, going to zero like t-~/s. 

KEY WORDS: Fluctuation phenomena; random processes; Brownian motion. 

1. INTRODUCTION 

We cons ider  the B r o w n i a n  m o t i o n  of a part ic le  (walker)  o n  a r a n d o m  
combl ike  s t ruc ture  defined as follow.t1) At each po in t  of a semi- inf ini te  latt ice 
( b a c k b o n e )  is a t t ached  a side b r a n c h  ( too th)  hav ing  a r a n d o m  length;  two 
given teeth are on ly  connec ted  via the backbone .  As a consequence ,  go ing  
back to the b a c k b o n e  is a necessary step to proceed on  the latter. 

Such a p rob l em  was ana lyzed  in ref. 2 in the case of annea led  disorder ,  
i.e., when  the length of a b r a n c h  a t t ached  to a given site of the b a c k b o n e  
can vary  from one visit to the other.  Otherwise  stated,  this length  changes  
in t ime on  a t ime scale c o m p a r a b l e  to or  shor ter  t h a n  the re levant  t ime 
be tween two visits at  a given site. It  was s h o wn  that  when  the lengths  L ,  
are d i s t r ibu ted  accord ing  a b r o a d  law p ( L )  with infinite first m o m e n t ,  
a n o m a l o u s  diffusion occurs a n d  the exponen t  for the m e a n - s q u a r e d  
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displacement was found. These results were obtained from two different 
mean-field schemes, which, generally speaking, are believed to provide 
correct results in the presence of annealed disorder. 

We are here interested in the opposite case of quenched (static) dis- 
order, i.e., when the sample is chosen once for all (the choice of L,  at any 
site n being assumed statistically independent of the choice at any other site 
n' ~ n). This quenched disorder generates specific time correlations since, at 
each visit of a given site of the backbone, the particle faces exactly the same 
situation. In a previous paper ~3~ this problem was studied with various dis- 
tributions of lengths p(L), by performing systematic expansions of infinite 
continued fractions related to various quantities of physical interest. It  was 
shown that, for any p(L), broad or narrow, the dominant term of any such 
expansion coincides with what can be simply deduced from a mean-field 
approximation, well and independently defined. It can thus be said that, 
for this problem, this mean-field procedure actually yields the correct 
asymptotics, as far as only the dominant terms are considered. 

These conclusions are surprising, in view of the low dimensionality of 
the system (although it is not so easy to define it precisely, between d =  1 
and d =  2) and of the quenched nature of the disorder; both these features 
lead one to suspect that the fluctuations play an important role and, as a 
consequence, that a mean-field treatment should fail, at least when the 
relative weight of infinite branches becomes important as is the case with 
a broad law. Generally speaking, a mean-field treatment driven with the 
proper variable is very often correct in normal dynamical regimes and, if 
so, naturally gives the dominant self-averaging terms. As an example, for a 
random-random walk on a disordered 1D lattice when quenched random 
transfer rates IV, ..... the transport coefficients in the normal regime are 
indeed correctly given by the inverse moments ((1/W,,,,)k); anomalous 
behavior precisely arises when the latter are infinite. Clearly, in such a case, 
mean-field treatments cannot properly describe the dynamics. 

The study undertaken in ref. 3 eventually only considered the 
asymptotically dominant terms, which turned out to be self-averaging; we 
are here mainly interested in analyzing the time decay of the neglected sub- 
dominant terms, which are fluctuating from one sample to another. Clearly 
enough, according to the nature of the time decay of these fluctuations 
(slow or fast), the physical relevance of the mean-field results can or cannot 
be affected. It will turn out that, at least for the survival probability, this 
decay is very slow in time, whereas the expectation value indeed coincides 
with the mean-field result. 

The orderered comb (all the teeth have the same length L, also called 
pure system) is a straightforward problem, which can readily be solved by 
the use of generating functions; the basic results are as follows. For finite L, 
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the dynamics along the backbone is exactly the same as for a semi-infinite 
lattice, except for a rescaling in time [t--* t/(L+ 1)]: this plain slowing 
down just reflects the time spent by the particle in the branches. For 
instance, the probability to be at the starting point at time t decays as t-~/2 
at large times, as in a pure 1D lattice. It may be said that the probability 
fluid eventually fills up the visited side branches making then ineffective. 
On the contrary, when L is infinite, as can be anticipated in view of the 
results of the previous case, a new dynamical regime arises, which is 
anomalous since the diffusion process is characterized by nonstandard 
exponents; {4} as an example, the same probability now decreases as  1-3/4, 
faster than when L is finite, for obvious physical reasons. In this case, the 
saturation in probability never occurs. 

The preceding reminders serve as a guide for the disordered case. 
Indeed, they allow us to guess that when the disorder average of the lengths 
( L )  is finite (in particular when the latter are distributed according to an 
exponential law), a normal regime will occur, which is a plain generalization 
of what happens in the pure system. Indeed, it turns o u t  t3} that, once the dis- 
order has been properly sampled, the time is again simply rescaled, the scal- 
ing factor being now 1 / ( ( L )  + 1 ). On the contrary, when the lengths of the 
branches are distributed according to a broad law giving a high weight to the 
"infinite" ones and yielding an infinite mean length, the branches cannot be 
saturated and some kind of anomalous regime is to be expected. 

Although the previously developed mean-field approximation {3} indeed 
produces these two classes of asymptotic regimes, the question of the 
relevance of fluctuations is still open. One way to know more about this is 
to investigate the distribution functions describing the statistical properties 
of the fluctuatng terms. We here present a rather detailed study of the dis- 
tribution function for the survival probability, allowing us to find the time 
dependence of these terms. In addition, this analysis provides an explicit 
example of a distribution function having a nonstandard behavior [in one 
regime, this function has a self-similar structure (devil's staircase), in the 
other one, it is continuous but nondifferentiable (singular component)] ;  it 
allows us to analyze the decay in time of the non-self-averaging terms 
which represent the first correction to the mean-field behavior. 

The salient relevant features of disorder are here depicted by assuming 
a binary disorder: the random variable L can be equal either to 0 (with 
probability p) or to + ~  (with probability q). Figure 1 provides a schematic 
view of such a binary disordered comb. Alternatively, provided that the 
starting point is somewhere on the backbone, the corresponding geome- 
trical structure can be viewed as a comb with all its branches infinite, in 
which the first link between the backbone and the branches is randomly 
cut from site to site. 

822/78/5-6-14 



1406 Aslangul and Chvosta 

Branchcs 

Backbone 

Fig. I. Schematic drawing of a binary disordered comb with a semi-infinite backbone; the 
sites of the latter are numbered O, 1, 2,.... Each branch either is absent or has an infinite 
length. 

We here focus on the survival probability po(t) for the particle to be 
still, at time t, at its starting point. Any conclusion for po(t), which is a 
local quantity, cannot be blindly used to predict, e.g., the dynamics of the 
mean coordinate or its mean-squared dispersion (for instance, the expecta- 
tion value ( P o )  does not allow us by itself to ascertain the existence of 
dynamical phases). Yet, Po usually plays such a central role that a new 
analysis of it is worthy and can shed light on some aspects of the problem. 
The method used here is completely different from that of our former 
paper TM and relies on the study of the distribution function for the Laplace 
transform of po(t); this yields an independent calculation for the asymp- 
totics in time of its disorder average and, moreover, gives access to a study 
of fluctuations not undertaken in ref. 3. 

2. BASIC EQUATIONS 

In the overdamped limit, i.e., when inertial effects can be neglected, the 
motion of the Brownian particle may be described by a standard master 
equation with nearest-neighbor jumps, giving the time evolution of the 
probability to be at any given site of the whole geometrical structure; we 
call W (resp. w) the transfer rate along the semi-infinite backbone (resp. 
along any given tooth). After elimination of the motion in the branches, 
one gets a modified master equation involving the probabilities p,(t) to be 
at site n of the backbone (n = 0, 1, 2 .... ), given that the particle is certainly 
at site n = 0 at t = 0 [p,(t = 0 ) =  ~,,o]- Po(t) is the so-called survival prob- 
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ability. After performing a Laplace transformation {p,,(t)--*P,,(z) = - 
~ [ p . ]  }, we find for this modified master equation 

1 
x.(z) P,,(z) =--~ 6,,.o -- (2 - 6,,,o) e . ( z )  

+(1  -6 . .o)  P ._ l ( z )+P, ,+l (z )  (n>~O) (2.1) 

The quenched disorder is contained in the random function x.(z), which 
embodies the excursions in the branches; x,, can assume either of the two 
expressions (p + q = 1, Z = z/W) 

x.(z)  = Z -  xA(z), 

probabil i typ (no branch attached to site n) 

Z 
x . ( z ) - - - - x B ( z ) ,  (2.2) 

1 - - e  - ~  

probability q (branch of infinite length 

attached to site n) 

The xn are statistically independent (clearly 0 < x A  <xB for z a real, 
positive number). In the above equation, ~ is defined as 

Z 

c h ~ = l + 2 w ,  c~>0 (2.3) 

When Eq. (2.1) is Laplace-inverted, the left-hand side becomes a convolu- 
tion involving a memory kernel with a long-time tail; as already noted in 
ref. 3, this prevents one from making a Markovian approximation. This 
fact clearly implies the strongly disordered situation here considered, x .  
reduces to z /W when w = 0, in which case the infinite branches are inactive; 
in this latter case, and also obviously when q = 0, the dynamics is the same 
as for a semi-infinite lattice [ po ( t )~  t -t/2 at large times]. 

In the presence of disorder, each probability P.  becomes itself a random 
function, characterizable by its distribution function. In the following, we 
will only consider Po(z) and its distribution function Q. Namely, we define 

ProbE WPo(z) < P] = Q(P) (2.4) 

where z is a real, positive number (so that Po > 0). Q(P) is a nondecreasing 
positive function, vanishing for P<O,  and parametrized by the Laplace 
variable z; when the latter decreases, Q(P) will be shown to change 
gradually, going from a devil's staircase for large z (small times) to a 
continuous function for small z (large times). 
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In order to derive the equation for Q(P),  let us consider the recursion 
relation for the survival probabilities associated to two distinct combs 
having respectively N and N +  1 sites on their backbones; the N-site comb 
is built with the random quantities x~, x2 ..... XN; the ( N +  l)-site one starts 
with Xo, followed by the same sequence x~, xz ..... x N. It is easy to show 
that the survival probabilities P~o N+ ~J and p]m satisfy the relation 

WP~o N+ l)(z; Xo, x l ,  xz ..... xtv) 

1 
- ( N ~ > I )  ( 2 . 5 )  

1 
Xo+ 1 1 

1 +  
wp~N)(z;  XI ,  X 2 ..... XN) 

Each of these two P's has its own distribution function, Qu and Qu+ 1. In 
Eq. (2.5), the random variable Xo is statistically independent of all the other 
x , ,  1 ~< n ~< N. Using this fact and following the method explained, e.g., in 
ref. 5, one finds that these functions are linked by the following relation 
(details are given in Appendix A): 

+qQN[q~(P ) ]  ( P > 0 )  (2.6) 

0 is the unit step function [~b(x) = 0 if x < 0, = 1 if x > 0]. The ~b's are two 
noncommuting M6bius transformations defined in terms of the x/  
(I  = A, B): 

( x t + l ) P - 1  
~bt(P) = - ~ (P ;  xt) (2.7) 

1 - x t P  

In the following, P*  and P* will denote the positive fixed points of the ~b's: 

~b,(P*) = P* > 0, P*  = ~  [ ( 1 + 4 ) ' / 2 -  11, 

1 1 
- - < P * < - -  ( I = A , B )  
xt + 1 x~ 

Equation (2.6) allows us to define a recursive scheme to obtain QN for any 
N, given that Q~ is obviously 3 equal to 

Qa(P)= p O ( P -  x j ' )  + q O ( P -  x ~ ' )  (2.8) 

3 For N= 1 (single-site backbone), Eq. (2.1) reduces to xoPo(z) = 1/W. 
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It can be proved (61 that, when N--* +co, the sequence {QN} does have a 
limit, simply denoted as Q(P), and this is the distribution function in which 
we are interested. This function is the fixed point (in function space) of the 
functional equation 

P t Q(P,=pO(P-~)+qO( ---~n)+pQ[qkA(P)]+qQ[q~s(P,] (2.9, 

or, equivalently (the brackets ( -.- ) denote averaging over the two values 
of x), 

Q(P)= ( O ( p -1)  + Q[qb(P; x) ] I (2.10, 

Q(P) displays rather unusual properties (and indeed an infinite number of 
singularities), as a consequence of(2.9). 

Before going on, three comments are in order: 

(i) For any N, QN(P) possesses many steps (2u), due to the 
presence of the 0 functions; these singularities originate from discretization 
of space. Indeed, on a more basic level, the description of Brownian motion 
first involves a Fokker-Planck equation for a function P(x, t) giving the 
probability of presence in continuous space. As ordinarily assumed in the 
overdamped limit, the relevant features of this equation can be captured by 
a master equation on a lattice with next-nearest couplings, as was done 
here. The functional equation (2.9) results from such a description. 

Clearly enough, the introduction of second-next-nearest couplings 
would modify the recursion (2.5), by linking more that two survival 
probabilities; this would change the basic equation (2.9). One can figure 
out that, loosely speaking, each given step of the previous Q(P) would split 
into several ones, tending to "regularize" each singularity. With this in 
mind, one can say that the incorporation of long-range couplings would 
eventually generate a smooth function O(P), which can be viewed as some 
kind of coarse-grained average (envelope) of the initial Q(P). Note that the 
limit N--* +co introduces by itself a new singular feature, in the sense that 
the number of elementary steps is now infinite. 

(ii) For  p = l  (resp. q = l ) ,  Eq. (2.9) with the proper boundary 
conditions produces the expected solution Q(P)=O(P-P*) [resp. 
Q(P) = O(P- P*)] .  

(iii) The mean-field approach in ref. 3 amounts to replacing 
Eq. (2.10) by 

Q(p)=Q[cb(p; <x>], P*<.P<.P* 
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This equation has the solution 

Qmf(p)=o(p-pmf), P 'J = ~ Lt  1 + ~-~-~)1/2- l J  
F/ 4 k  7 

(2,11) 

The small-Z expansion performed in ref. 3 shows that the dominant term 
in Po(z) is devoid of disorder fluctuations (self-averaging term) and is 
indeed given by P"//W. By using Eqs. (2.2), one readily obtains 

1 Z < l : p , , f  ~ 1 ~ 1 (rZ)_,14.~__p . (2.12) 
~ (qx ")'12 ~ ' - ~  x/~ 

So, the dominant term for Po behaves as Z - ' / 4  at small Z. 
Let us now come back to Eq. (2.9). We first show that Q goes from 

zero to one on a bounded interval. It is seen from the recursion relation 
(2.5) that Po is certainly greater than 1/(xB + 1) and certainly smaller than 
1/xA. As a consequence, we have 

( ' )  Q P <  =0,  Q P >  =1 (2.13) 
x n +  1 

Now, let us define a "trajectory" by successive applications of the trans- 
formation ~bA, Pj+I = ~bA(Pj), j>_-1, starting from any point P, to the right 
of P*.  For all the points in the interval P >  P*,  Eq. (2.9) reduces to 

Q(P)=q+ pQ[(L4(P)].e~Q(Pj)=q+ pQ(Pj+,) (2.14) 

since then ~bn(P) is negative, implying that Q(~bB(P)] = 0  [see Eq. (2.13)]. 
Now, due to the instability of the fixed point P*,  sooner or later, one even- 
tually obtains a P~ located to the right of 1/xA, for which, by Eq. (2.13), 
Q = I ;  then, due to Eq. (2.14), Q(Pj_, )=q+p= 1, and so on. Thus, by 
tracing back the trajectory and by successive use of the set of equa- 
tions (2.14), one concludes that Q(P)= 1 for any P >  P*.  The same type of 
argument can be used to prove that Q ( P ) = 0  if P<P* (P* is also 
unstable). We then have 

Q(P <P*)=o, Q(P> P*)= 1 (2.15) 

This allows us to concentrate on the basic equation for Q written in the 
relevant interval: 

') P*<~P<~P*:Q(P)=qO --~e +PQ[(~A(P)]+qQ[~bn(P)] (2.16) 
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Fig. 2, 

) 

PBA P" AB 

Relevant parts of the curves representing the functions ~A and ~a defined in Eq. (2.7). 

together with the boundary conditions (2.15). In the following, the 
"machinery" contained in Eq. (2.16) will be frequently interpreted as 
corresponding to the "time" evolution of a dynamical system. Figure 2 
gives a schematic drawing of the relevant parts of the graphs of the ~b's 
involved in Eq. (2.16). As should now be clear, the cycle ACBD is in fact 
the basic geometrical element of the dynamic mapping. 

The solution of Eq. (2.16) is Q(P) = LimN~ +00 Qu(P); QN(P) has the 
expression 

N 

aN(P)=  ~ p,q,V-,, ~ O ( p _ p i z l  ) (N>~ 1) (2.17) 
n = 0  {/} 

{I} denotes a configuration with A (resp. B) occurring n (resp. N - n )  times 
and where Pill  is defined as 

p{l}=~ltto~jl2 . . . . .  ~ /u (+oO) ,  I k = A  or B, ~bt=~b; t 

This formal expression shows that Qu increases from 0 to 1 by a succession 
of 2 u steps. 

Little is known about functional equations such as Eq. (2.16), 
although they appear in various fields (for example, in the study of branch- 
ing processes; see, e.g., ref. 7). Luck ~51 explains in detail how any singularity 
occurring at some Ps propagates though the whole interval (here 
[P*,  P*])  by successive applications of products Ot~oqJt~ . . . .  (~tN . . . .  �9 
Here, for the purpose of further reference (Section 4.2), we will write down 
the scaling exponents near P* and P] .  Let us introduce the notation 

P*a = ~bBI(P*), P 'B--  ~A'(P*) 

In the interval [P*,  Inf{x~ l, P*,~}], Eq. (2.16) reduces to 

Q(P) = qQ[(~B(P)] (2.18a) 
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The solution of such an equation, constrained to vanish for P < P*,  has 
the form ~5) 

O(p)  = (p  _ e,):.n HB(XB) (2.18b) 

where H8 is a periodic function of period 1 and 

- I n  q l n ( P -  P*)  
2 n -  l n [ r  XB ln[r  (2.19) 

For the same reasons, the solution equal to 1 for P >  P* can be written, 
in the interval [Sup{(1/xA + 1), P'B}, P*] ,  as 

Q(P)  = 1 - (P* - P):'~ H A(X A) (2.20) 

where H A is again a function of period 1 and 

- l n p  ln(P* - P) 
2A - In [~b~(P*)]' XA - ln[~b~(P*)] (2.21) 

The functions Ht are the so-called periodic amplitudes and cannot be 
obtained by a local analysis; the scaling factor characterized by the expo- 
nent 2/ essentially provides some kind of smooth envelope Q(P), as can be 
intuitively ascertained from the simple example treated in Appendix B. 

It is useful to write down the asymptotic Z dependence of the 
exponents in the large-time limit (Z,~ 1). From the above formula, one 
finds 

- l n  p - l n  q 
2A ~ 2Z  m ,  2B ~ 2(rZ)1/4 (2.22) 

Thus, as Z decreases, the envelope Q(P) scales at the endpoints with larger 
and larger positive exponents and it can be anticipated that, for Z,~ 1, 
Q(P)  will display a rather sharp variation, expressing the decrease of 
fluctuations as time goes on. 

Indeed, it is even worthy to go one step further and build a semiquan- 
titative picture for Q(P), just to see the consequences of the singular Z 
dependence of the exponents 2/ on the asymptotics in time of average 
values. Let us consider the following model function: 

R ( P ) = C  dP' ( p , _ p . ) : . B - ,  ( p . _ p , ) : . A - ,  (2.23) 

where C is a normalizing factor. It may be said that dR/dP is the simplest 
expression which mimics the density associated to the envelope of Q, 
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sharing with it the same exponents at endpoints. Now, R can be used to 
calculate a naive representation of the two averages ( P )  and a?= 
((p2)  _ (p)2)~/2. Taking Eq. (2.22) into account, we find 

lnq'~ (2 In q),/2 (rZ)-t/8 (2.24) ( P ) ~  l+lnpj(rZ)- l /4 ,  ap~ lnp 

so that, in this crude picture, the relative fluctuation G?/(P) scales like 
Z 1/8. It will be seen below (Section4) that this exponent is indeed the 
correct one. So, it is seen that the average values will follow power laws in 
time with exponents directly connected to the Lifschitz tails of the P 
distribution function. 

It turns out that Q(P) displays two quite different shapes in the two 
cases Z ~ 1 and Z,~ 1 relevant for small- and large-time dynamics, respec- 
tively; for the sake of clarity, they will be successively investigated. For a 
reason which will soon be clear, the equality defining the frontier between 
these two cases is P~A -= P]B. This defines a unique real number Zo; Fig. 2 
precisely shows the case where P*A < P 'B ,  i.e., Z >  Zo (small times, point 
D to the left of point C). As will be seen, the function Q(P) undergoes a 
transition for Z = Zo: for Z > Zo, it exhibits horizontal plateaus and a self- 
similar structure (devil's staircase). For Z<Zo,  Q(P) becomes is an ever- 
increasing function, although nondifferentiable. Although we are mainly 
interested in the large-time regime, the detailed analysis of Q(P) for Z ~ 1 
is worthy and is the subject of the next section. 

3. A N A L Y S I S  A T  S M A L L  T I M E S  

Let us consider the case Z >  Zo, which, loosely speaking, essentially 
describes the dynamics at short times. Despite this, the distribution func- 
tion Q(P) already possesses a complex structure due to the fact that, even 
at such times (even when the particle has just started to move and does not 
yet have an overall view of the disorder), all times are indeed participating 
in the Laplace transformation giving Po(z). This entails that, even at small 
times, the complexity due to the surrounding disorder already shows up. 

It is easy to build a geometrical procedure allowing one to draw the 
graph of Q(P)." First we note the existence of a central plateau at a height 
equal to q = 1 - p, extending on the interval Ko = [P~A, * PAB]" Indeed, in 
this interval, Q[~bA(P)] vanishes and the sum of the two other terms in the 
RHS of Eq. (2.16) is everywhere equal to q, so that 

Q(P~Ko)=q= l - p  
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This knowledge serves as a seed to generate the graph in an infinite 
sequence of nonoverlapping intervals which eventually cover the whole 
interval [P* ,  P*] .  For instance, we can now find Q in the interval K+~ 
obtained by "imaging" Ko with ~bA; by noting K+~ = @A(Ko) and using 
Eq. (2.13a), one can write 

Q(PEK+~)=q+ pQ(P~Ko)=q+ pq= 1 _p2 

In the same way, we can define K_ 1= @B(Ko) and write 

Q(P ~ K_ 1) = qQ(P ~ Ko) = q2 

and the same process can be repeated with K_+l, and so on. We thus obtain 
the graph of Q(P) as consisting of disconnected horizontal lines at heights 
q"+~ (in the intervals K .... n~>0) and 1 - p  ''+~ (in the intervals K§ 
m >/0); this is schematically depicted in Fig. 3: at this early stage, the graph 
is far from being complete. The remaining holes can be filld by other 
suitably chosen sequences; for instance, applying ~'B to K+I,  one finds an 
interval located within the hole between K+ L and Ko. The self-similar struc- 
ture of Q(P) is obvious [as an example: the increase of Q between Ko and 
K§ (between the points c~ and/~) is the image by ~A of the increase 
between P* and P*AI. One can also find Q at infinitely many special 
points, the positive fixed points of any product of the ~/; for instance, at 
the positive fixed point of ~b A o~b B, Q is equal to q2/(1- pq). 

The above considerations allow us to devise a recursive scheme giving 
as many values of Q(P) as desired. Consider that we want to know Q for 
some arbitrary value Po outside Ko. Take this Po as the starting point of 
a trajectory defined by the relations 

Pj+, = ~bB(Pj) iff P*<Pj<P*A (3.1a) 

Pj+,=(gA(Pj) iff P*s<P/<P* (3.1b) 

Q(P) 

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ;--:-.- 

, q = l - p  ,t i l l ;  ' "  P:- 
q2 ,, 

0 ) 

I~A P" All 
Fig. 3. Schematic view of the graph of Q at its early stage of construction (see Section 3). 
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D 

P3 

B C 

A 

Fig. 4. Illustration of the recursive procedure allowing us to find Q(P) in the small-time 
regime [see Eqs. (3.1)]. For simplicity, Pj denotes a point of the trajectory as well as its 
abscissa. 

and let us stop this trajectory at the first iterate Ps which belongs to Ko; 
Pj is obtained after a finite 4 number  of iterations, since the fixed points A 
and B are unstable, so that the trajectory bounces off the two curves ~bA 
and ~b B by staying within the cycle ACBD; it can only escape through the 
"doors" AD and BC. At point P j, we know that Q = q. 

To the above relations defining the trajectory, we associate the corre- 
sponding Eq. (2.16), which precisely reads 

Q(Pj) = qQ(Pj+ , ) (3.2a) 

Q(P~) = q + pQ(Pj+I ) (3.2b) 

As soon as Ps is found, the RHS of Eqs. (3.2) is known, so that, by tracing 
back the trajectory [i.e., by inverting the chain of Eqs. (3.2)], we can 
successively obtain Q(Pj) at all those points involved in the trajectory. For  
the special trajectory shown on Fig. 4 one has 

Q ( P o ) = q +  pQ(P,),  Q ( P , ) = q +  pQ(P2) 

O(Pz) = qQ(P3), a(e3)  = qO(P4) = qZ 

SO that 

Q(P2)=q 3, Q ( P l ) = q +  pq 3, Q ( P o ) = q +  p(q+ pq 3) 

It is seen that the crucial point here is that the trajectory can indeed 
by inverted, which results from the fact that for any Pj only one of the two 
~b's appearing in the RHS of Eq. (2.16) is effectively acting. In other words, 
each Pj has just one "son" Pj+ ~ ; the trajectory does not display branching 

4 This is true provided that Po is not exactly equal to a fixed point of any product of ~'s; due 
to the finite representation of numbers in the computer, this has no practical consequences. 
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Fig. 5. Distribution function Q in the small-time regime; here, X denotes the reduced 
variable ( P - P * ) / ( P * - P * ) .  Q takes on the constant value q =  l - p = 0 . 5  on the interval 
denoted as K o in the main text. 
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Fig. 6. Enlargement of the curve given in Fig. 5. 

Fig. 7. Distribution 

1.0~ Q 
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function Q for times greater than in Figs. 5 and 6. X still denotes the 
reduced variable ( P -  P*)/(P* - P*). 
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Enlargement of the curve given in Fig. 7. 

points, and, for this reason, can be inverted by running backward in time: 
this characterizes the regime Z>Zo, for which Ko exists. The whole 
process can be repeated for a lattice (regular or random) of initial points Po; 
from a given set of starting points, one eventually obtains the values of Q 
at points spread over [P* ,  P* ]  in a "chaotic" way. 

The results of such a procedure are given in Figs. 5 and 6. Here Q is 
plotted as a function of the reduced variable X defined as 

p - p *  
X =  (3.3) 

PA -- Ps  

and displays the general features discussed above; Fig. 6 is just an enlarge- 
ment illustrating the self-similar structure of the graph of the function Q. 
Figures 7 and 8 display the same kind of results for a somewhat smaller 
value of Z and show the tendency of Ko to shrink when Z decreases; it is 
seen that the central plateau where Q = q = 1 - p = 0.5 is now considerably 
reduced, although still visible. 

4. A N A L Y S I S  A T  L A R G E  T I M E S  

As Z decreases, the interval Ko shrinks; for Z smaller than Zo, Ko is 
definitely reduced to a point (now * * Pan > PAn) and the problem changes 
in a qualitative manner. Because P*A > * PAn, the basic cycle ACBD is 
distorted (point D to the right of point C); since the prominent interval Ko 
no longer exists, the above recursive scheme fails. Indeed, for any Pj in the 
interval Ko = [ P ' n ,  P*A], both terms ~ba and ~bn in the RHS of Eq. (2.16) 
are effectively present (and unknown). This gives rise to branched nonin- 
versible trajectories. Although it is still possible to build a recursive formal 
process allowing one to construct Q(P) by intervals, it turns out to be of 
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no practical utility. In the following, we will first present a purely numerical 
calculation of the solution of Eq. (2.16) which will serve as a reference for 
the sequel. Then, we will derive an approximate analytical expression 
which yields a good approximation for Q(P). 

4.1. Numerical  Calculation of Q(P) 

Equation (2.6) can be used as the basis of a simple recursive numerical 
calculation of Q(P); it turns out that, since 1/xA does not belong to the 
relevant interval [P* ,  P*] ,  the convergence is not so good. As a matter of 
fact, the same converging process can obviously be made faster simply by 
changing the starting point Q= of the whole calculation. A good choice is 
to begin with Q~=O(P-Pi,), where Pi, is any point in the interval 
[ p , ,  p , ] . 5  At the nth step, the approximate function Q,, is obtained as a 
linear combination of 2" unit step functions O(P-Pk) with weights wk; it 
is then possible to compute the approximate Z-dependent average value of 
P= WP o, (P>("): 

2 n 

<p>oo= ~ WkPk (4.1) 
k = l  

For a given Z, this quantity gently converges with no oscillation; as a rule, 
the number of iterations required for having a nearly constant <P>t"~ [up 
to five figures for the average value of the reduced variable X defined in 
Eq. (3.3)] increases with Z -= (the maximum number of iterations was 
n = 14). Obviously, the same numerical procedure can be used for any Z, 
in particular in the small-time regime, Z > Zo. 

The results of such a calculation are given in Figs. 9 and 10. In Fig. 9, 
we present various curves Q(P) for different Z values, including the regime 
already known from Section 3. This set of curves displays the tendency of 
Q(P) to become rather sharp at large times, due to the fact that, as the 
motion proceeds, fluctuations tend to decrease. In Fig. 10, we give the 
variation of - I n < P >  as a function of - l n  Z. It is seen that - l n ( P >  
converges to a straight line, establishing that 

< p > ( z )  --, c z  -~  

where C is a constant prefactor and fl a positive exponent. Both C and fl 
assume the values allowing us to state that (P>  and pmr coincide as far as 
their first dominant term is considered [see Eq. (2.12)]; indeed, the 

5 It  was checked that  different choices of Pin indeed yield the same results. 
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Fig. 9. Various distribution functions calculated according to the numerical scheme 

described in Section 4.1; the value of the parameter W[2w is 1.0. 

product ( P ) ( x ) 1 / 2  (dashed curve) converges rapidly to one. One can thus 
conclude that 

1 1 (W)I/4z_,/4 (4.2) 
Z,~ 1" ( P o ) ( Z )  ~ ' - ~ q q  

Note that for q and/or w = 0, the prefactor is infinite, which is consistent 
with the fact that, in this case, (Po)(Z)~ W-1Z -1/2. 

Equation (4.2) gives the dominant term of the average value of the 
Laplace transform of the survival probability po(t). First, one has to be 
convinced that the Laplace transformation and the averaging can be per- 
formed in any order without changing the result; this can be ascertained 
since Q(P) is actually increasing on a bounded interval, namely [P* ,  P*] ;  
in other words, ( s 1 7 6  ~ [ ( P o ) ]  and all the analytical properties of 
Po are carried back to (Po) .  Second, we know that Po(z) is analytic in the 
right half-plane Re z>~0, so that the same is true for the average ( P o ) ;  the 
above asymptotic expansion (4.2) can thus be analytically continued in the 
vicinity of the origin, outside the real axis. Using the fact that, from its very 

3.0-  

p = 0 5 W = "~w I . . . . .  _ _ B  
2.0 -- o . . s ~  

OI,/<P> 
- LnZ 

2.0 3.0 4.0 5.0 6.0 7.0 ~R.0 9.0 I().l) 

Fig. 10. Variations as a function of -ln Z of the average values deduced from the distribu- 
tion function calculated according to the numerical scheme described in Section4.1 
(p = 0.5, W= 2w). 
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definition, Po(z) tends to zero for z ~ + ~ ,  Re z > 0, and further explicitely 
assuming that any other singularity of Po stands at a finite distance 
of Z =  0, we eventually can find the behavior of <Po> at large timesl8); we 
obtain 

1 1 (W)  1/4 
t ~  +oo : <po>(t)~F(1/4) x/~ (Wt) -3/4 (4.3) 

Equation (4.3) shows that the average <po(t)> asymptotically behaves in 
time as po(t) does in a pure system in which all the branches are infinite 
(1-3/4). Disorder only appears through the prefactor, which embodies the 
probability q and the branch efficiency (w). 

The simple numerical calculation described above does not allow us 
to obtain the precise Z dependence of the fluctuation of P, for the follow- 
ing reasons. By its definition, the dispersion ere=2 <p2>(Z)_(p>2(Z ) 
involves a second moment which, as a rule, enters its asymptotic regime in 
a slower way than a first moment does (one has to wait a longer time 
before the subdominant terms are negligible). This means that in order to 
find the exponent for cr e, one would have to investigate much smaller Z 
values, for which the previous numerical procedure has such a poor con- 
vergence that an alternative method is required. 

Figure 10 also shows the relative dispersion ae/(P ) and already dis- 
plays the slow decrease of the relative fluctuation. It is interesting to note 
that, on the contrary, <P> rapidly converges to <x> -'/2 (the mean-field 
value) much before than the fluctuations are substantially reduced. Thus, 
although po(t) is certainly less and less fluctuating as time goes on, the 
decay of its fluctuations can be expected to be rather slow. For the reasons 
explained above, we now look for an analytical approximate expression in 
order to get the asymptotics of these fluctuations. 

4.2 An Analytical Approximation for Q(P) and Analysis of 
Fluctuations 

Our aim is now to derive an approximate expression for Q(P) valid 
at small Z. This must be done with great care, as can be inferred from 
the following remark. It can be seen that for Z,~ 1, the graph of ~bA is 
extremely close to the first bisector, so that it is very tempting to simply 
substitute OA(P) by P in the basic equation (2.16). We are left with 
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and the weight q just disappears. The solution of this equation, subjected 
to the boundary conditions (2.15), is clearly O(P-P*), which misses the 
important factor q-i/2 (and gives (P) , ,~  P*). 

From the previous numerical calculation, we see that, for Z,~ 1, the 
only relevant interval for P stands in the vicinity of P*.  This can also be 
inferred from Eq. (2.22), which shows that, since for Z,~ 1 the exponent 2A 
diverges as Z -  1/2, Q(p) is already quite close to 1 far before P reaches P*.  
This is due to the fact that for Z,~ 1, ~bA is quasilinear and quite close to 
the first bisector; so, in order to go from one point in the middle of the 
basic interval to another one in the vicinity of P* ,  one needs many bounces 
and each of them introduces a factor p < 1. Since 2B is also diverging (as 
Z -  1/4, that is, less rapidly than 2A), all the Z-exponents for the averages 
are expected to be controlled by 2n, i.e., by Lifschitz tail at the lower edge 
of the distribution. 

It is thus be recognized that, as a whole, Q(P) is becoming steeper and 
steeper, the (random) variable P being concentrated near P* ,  which is of 
the order of Z-1/4, whereas x~ and xB are small parameters of the order 
of Z and Z 1/2, respectively. Precisely 

1 
x~ ~ (rZ)'/2, p .  ~ ~,/~--~' 

This allows us to expand the ff's as 

1 P* ,,~ ~ = Z - 1/2 
~/xA 

(L4(P),~P--I+O(ZI/2), (G~(P)~,P+(xBpR-1)+O(Z 1/4) (4.4) 

Now, Q approximately satisfies 

Q(P) = pO(P - 1 ) + qO(P + xnP 2 - 1 ) (4.5) 

Up to this point, no drastic approximation has been actually done; the 
latter equation is still a functional one and its solution still retains the 
essential features of Q(P). We now assume that the function Q(P) can be 
approximated by a smooth differentiable function Qap, which may be seen 
as a coarse-grained average of Q. An equation for Qap, valid up to an 
unessential cutoff, can be written down simply by expanding Eq. (4.5) in a 
Taylor series truncated after the second term. This gives for p = dQap/dP: 

[(p2_p,2)2+P p,4]_.d..fi+dP 2p ,2(p2_~p .2)  p(p,= 0 (4.6, 

At this point, several comments are in order. First, dp/dP vanishes for P = 
P*/x/q, which precisely coincides with the result expressed by Eqs. (4.2) 
and (2.12); in other words, p has its maximum at p=pmr. Second, the 

822/78/5-6-15 
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crudest approximation in Eq. (4.6) should be to forget about the derivative, 
which produces the solution 6(P-P*/q'/2), again consistent with 
Eq. (4.2); indeed, this is strictly the mean-field result, as expressed by 
Eqs. (2.1I) and (2.12). Finally, the solution of (4.6) no longer has the 
specific singularities as described in Eqs. (2.18b). This distinction is hoped 
to be irrelevant since it implies only the close vicinity of P*,  in which 
Q is extremely small when Z , ~ I  [Q'~(P-P*)t-lnq)Crm-'/']. Finally, 
Eq. (4.6) is expected to provide an approximate Qap(P) wich is better and 
better as Z becomes smaller and smaller. 

Equation (4.6) can be readily integrated; the approximate density 
associated to Q(P), Q'ap, can be eventually expressed in terms of a complex 
number A and its complex conjugate A*: 

= ( ~ p .  + p)r P~ ~_, ( rZ) -  ~,4 (4.7) a'ap(P) = CA*A, .4 \ r  , 

C is a normalization factor and ~ the complex number 

1 
= ~ 2  [ (q -  1/2 + i )1/2 + i(q- t/2 _ I )1/2] 

From this expression, we can deduce Qap by a simple numerical integra- 
tion. The result of this last calculation is shown in Fig. 11 for Z =  10 -4, 
together with the "exact" result (dashed curve) obtained from the purely 
numerical scheme developed in Section4.1 [in addition, the shown unit 
step function is the mean-field result (see Eq. (2.11); here, one has ( X ) =  
Zl/4(q-1/2__ 1)~  0.041]. The horizontal scale has been dilated in order to 
display the important part of the curves and to make their differences 
clearly visible. It is seen that the two curves are indeed quite close to one 
another (they stand closer and closer as Z becomes smaller and smaller). 
This agreement may be considered as establishin the correctness of the 
above analytical procedure on numerical grounds, since there is no obvious 
justification for it (although such a kind of expansion is frequently used in 
practice; see, e.g., ref. 9). We thus explictely claim to have only a numerical 
justification for an analytical expression in which the parameters of the 
model can now be varied at ease. Note the Z dependence in the exponent 
of the quantity A [Eq. (4.7)], which goes to infinity if w and/or if q goes 
to zero. The large exponent behaving as Z -  1/4 entails that Q'ap does have 
a very rapid variation in the large-time limit; at infinite times, it becomes 
a 6-function. 

We give in Fig. 12 the two approximate densities Q'ap, plotted as func- 
tions of the reduced variableX [see Eq.(3.3)]. This figure displays 
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Fig. 11. Analytical approximation Qap as a function of the reduced variable X (solid curve); 
the dashed curve, shown for comparison, was calculated according to the numerical scheme 
described in Section 4.1 (here W =  w); the thin unit step curve is the mean-field result as 
expressed by Eq. (2.11). 

qualitatively the decrease of the average value ( X )  and of its fluctuation 
ax as Z decreases; it also shows that ax  is hardly smaller than ( X )  even 
for Z = 1 0  - 6 .  

Although we now know an approximate explicit expression for the 
density Q'ap, the latter is not so easy to handle analytically. In order to 
readily find the Z dependence of fluctuations, we take advantage of the fact 
that the exponent ~P* has a very large modulus, allowing us to calculate 
(pZ)  and ( P )  by the Laplace method. (111 A straightforward but some- 
what tedious calculation yields the following expressions: 

2 P p .  
~r e - 4q--3/2 

(4.8) 

(4.9) 

120.0- Q'ap 

100.0 i 

80"0 ~ z= Ic) f' 

60.0 ! 

400~ [~021 
20.01 ~ z-Io  L Z =  IO L 

0.00 0.05 0. I 0 0. ] 5 

Fig. 12. Analytical approximation Q'ao for Z =  10 -4 and Z =  10 -6 displaying the fact that 
the dispersion is hardly smaller than the average value even for very small Z. 
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Equation (4.8) shows that the first relative correction to the average value 
is ~ I / P * ~ Z  TM. Equation (4.9) gives the interesting sought result: the 
mean-squared dispersion of P diverges as Z - ' / 4  as Z goes to zero. From 
this, we can deduce the asymptotic time behavior of the autoconvolution 
ofpo(t): 

dt' ( po ( t -  t') po(t') ) - ( po ( t -  t') )(po(t') ) 

~ W - l  1 P ( ~ W )  TM 
- -  ( W t  ) - 3/4 
F(1/4) 4q 3/2 

It results that the mean-squared dispersion for po(t) has the asymptotic 
decay 

a~(t) -- (po(t) po(t) ) - (po(t) ) (po(t) ) 

~ P._L-- (__W~ TM [r(1/8)]-2 (4.10) 
4q 3/2 \ WJ (Wt) 7/4 

implying that at large times 

a,0(t) pl/2 ( w.~,/S F(1/4) 1 
(po)(t)~2-qV~\-w/ r(1/8) (wt) '/8 (4.11) 

We can thus symbolically write, for a given sample, 

po(t)~ (po(t))[-1 +rl({L,,})(Wt) -'/8] (4.12) 

where q denotes a noise of order t o depending on the given configuration 
of the lengths. Thus, although po(t) is certainly less and less fluctuating as 
time goes on, the decay of the fluctuations turns out to be extremely slow. 

5. S U M M A R Y  A N D  C O N C L U S I O N S  

In the present work we analyzed in detail the average and the fluctua- 
tions of the survival probability po(t) in the large-time regime. 

The averaged probability (po)(t) behaves in the asymptotic regime as 
already found in ref. 3 and is actually correctly given by the mean-field 
treatment there defined; the convergence of this average to the mean-field 
value is a rather rapid one. The asymptotic time dependence of (po(t)) is 
the same as for an ordered comb in which all the teeth have an infinite 
length; the disorder only enters through a prefactor diverging when the 
probability q of having an infinite tooth tends toward zero. 
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On the other hand, the behavior of sample-to-sample fluctuations is 
markedly different, as shown by a detailed study of the distribution func- 
tion Q(P) describing the random variable Po(z), the Laplace transform of 
po(t). Q(P) undergoes a transition for some value Zo of the Laplace 
variable, going from a devil's staircase to a smooth function. A numerical 
calculation of Q(P) in this latter case was used for two purposes; first, it 
allowed us to give a first view of the slow decrease of fluctuations as the 
motion proceeds in time (and also the correctness of the average value 
( P o )  previously obtained); second, it was used as a check for an analytical 
approximate expression for Q(P) displaying explicitly the parameters of the 
model and, essentially, the singular dependence upon the Laplace variable. 
With this, it was eventually possible to find the precise time decay of the 
fluctuations of the non self-averaging first correction to the mean-field 
behavior; it was shown that the relative fluctuations undergo a very slow 
decay in time, according to a t-1/8 law. This makes the mean-field result 
valid only at extremely large times, once the unavoidable fluctuations 
linked to quenched disorder and low dimensionality have been actually 
washed out. As a consequence, the mean-field result is, at intermediate 
times, of no physical relevance. 

The discussion of the present paper focused on the survival probability 
po(t), which, although usually playing a central role in this kind of 
problem, is obviously far from providing a complete description of the 
dynamics. Due to the fact that this simple quantity already shows large 
fluctuations with a very slow decay in time, it is tempting to conclude that, 
as a whole, the dynamics probably also displays physically relevant non- 
self-averaging features. The mean coordinate (x)(t) and the mean squared 
displacement dx2(t) are obtained by performing summation over all the p , ;  
such a procedure, involving strongly fluctuating nonindependent random 
variables, can either enhance or reduce the overall fluctuations. Due to this 
uncertainty, it may be thought that the large-time behavior of ( x )  and of 
dx'- is still a largely open question. 

A P P E N D I X  A 

Because Eq. (2.6) is one of the basic equations of the present work, we 
here give its full derivation. The starting point is Eq. (2.5) simply rewritten 
as 

1 p~U) + 1 
p ( N + l ) _  ~ (A1) 

1 Xop(N)+Xo + 1 
X o +  1 

1 
1 + p(NI 
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where it is understood that p(N) is statistically independent of Xo. The dis- 
tribution function Qu+ t(P) is, by definition, the probability that PtU+ ~) is 
smaller than P: 

Qu+ I(P) = P r o b [ P  tu+ ii < p ]  (A2) 

The event p~u+ ~ <  p can be realized in two mutually exclusive ways: 

o r  

(Xo + 1 ) p~,V) _ 1 
(i) P < I ' P ~ ' V + I ~ < P . c ~ - I - I < P r  (A3) 

Xo Xo 1 - Xo U m  

(ii) 
[ p >  .p~U+l)<p,~e .p~m<(xo+l)P(m 1 

xo 1 -- xoP ~v) 

1 
or p~m > _ 1 - - -  (A4) 

X0 

For  the moment,  let us call f the density describing the random variable 
Xo; from Eqs. (A1)-(A4) and introducing the unit step function 0, we can 
now write 

QN+, (P  IN+t~) 

0 1 

•176 1 -Xo  P'A'' 

Since P is certainly positive, then Q N ( -  1 - 1/Xo) = 0; this equation can be 
rewritten as 

(A5) 

Taking now into account the binary nature of the presently considered dis- 
order, f ( x o ) = p 6 ( x o - x A ) + q 6 ( x o - x s ) ,  we obtain Eq. (2.6) of the main 
text. 
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A P P E N D I X  B 

As an example, let us consider the simple equat ion 

f i x )  = qf(~x) 

where q and a are real numbers  ( 0 < q <  1, a >  1). The f u n c t i o n 6 f  is 
assumed to satisfy the boundary  conditions 

f(x) =0, Vx<O;  f ( x ) = C ,  Vx>~x~ 

where C and x~ are positive real numbers.  The unique resulting solution 
can be easily guessed and is found to be 

f ( x )  = C q -  Int [ln(X/Xl )/In ~] (m) 

where Int  denotes the integer part. This function displays a countable 
number  of steps between 0 and xl  and its graph also displays a self-similar 
structure. On the other hand, if one looks for a solution scaling like x ) near  
x = 0, one obtains 

f ( x )  = Cx- ln  q/a, = (B2) 

Clearly, these two expressions are different, but the expression (B2) is 
easily seen to simply wash out all the steps occurring in (B1) and actually 
produces some kind of "averaged" function (coarse-grained envelope) 
which is a rather good approximat ion  of (B1) in the vicinity of x = 0 .  

On a technical level, it evidently possible to recover exactly (B1) by 
looking for a solution of the form x )'. The point is that  the equation 
giving 2 is 

1 =q~)" 

and has an infinite number  of solutions, of the form 

2 -  2 i n n - l n q  n ~ _  (B3) 
In ~ ' 

The naive scaling yielding (B2) only retained the solution n = 0 .  It is a 
simple exercise on Fourier  series to show that, with the whole set of solu- 
tions (B3), the exact form (B1) is recovered. 

6 With another boundary condition, this equation is known as the Koenig equation; tg~ the 
Koenig theorem then states that there exists a unique solution. 
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